(21218)

G

https://www.ccsustudy.com

Roll No. .....

BCA-I Sem.

# 18005

## B. C. A. Examination, Dec. 2018

#### MATHEMATICS-I

(BCA-101)

(New Course)

Time: Three Hours

[Maximum Marks: 75

Note: Attempt questions from all Sections as per instructions.

#### Section-A

#### (Very Short Answer Questions)

Attempt all the five questions. Each question carries 3 marks. Very short answer is required.

https://www.ccsustudy.com

https://www.ccsustudy.com

Show that  $A = \begin{bmatrix} 3 & 1+2i \\ 1-2i & 2 \end{bmatrix}$  is Hermitian.

2. Define limit of a function at a point.

https://www.ccsustudy.com

- Find the asymptotes of the curve  $\frac{a^2}{v^2} \frac{b^2}{v^2} = 1$ . 3.
- 4. State fundamental theorem of calculus.
- 5. Define vector in 2-dimension with example.

#### Section-B

#### (Short Answer Questions)

Attempt any two questions out of the following three questions. Each question carries 71/2 marks. Short answer is required. 7½×2=15

Determine the values of a, b, c for which the function:

$$f(x) = \begin{cases} \frac{\sin(a+1)x + \sin x}{x} & \text{for } x < 0 \\ c & \text{for } x = 0 \\ \frac{(x+bx^2)^{1/2} - x^{1/2}}{bx^{3/2}} & \text{for } x > 0 \end{cases}$$

is continuous at x = 0.

18005

https://www.ccsustudy.com

https://www.ccsustudy.com

https://www.ccsustudy.com

- 7. If  $y = a \cos(\log x) + b \sin(\log x)$ , show that:  $x^2y_2 + xy_1 + y = 0 \text{ and } x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0.$
- 8. Calculate the area of parallelogram spanned by the vectors a = (1, -1, 3) and b = (2, -7, 1).

#### Section-C

### (Detailed Answer Questions)

Attempt any *three* questions out of the following five questions. Each question carries 15 marks.

Answer is required in detail. 15×3=45

9. Verify Cayley - Hamilton theorem for the matrix:

$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}.$$

Also determine the characteristic roots and corresponding characteristic vector of the matrix A.

10. Check the continuity of the following functions at x = 0:

(i) 
$$f(x) = \frac{|x|}{x}$$
 for  $x \ne 0$  and  $f(0) = 0$ 

(ii) 
$$f(x) = \frac{e^{1/x} \sin(1/x)}{1 + e^{1/x}}$$
 for  $x \ne 0$  and  $f(0) = 0$ .

- 11. Trace the curve  $9ay^2 = (x 2a)(x 5a)^2$ .
- 12. (i) Expand  $\frac{e^x}{e^x+1}$  by Maclaurin's theorem.
  - (ii) Expand  $\log x$  in power of (x 1) by Taylor's theorem.
- 13. Evaluate:
  - (i)  $\int \tan^4 x \, dx$
  - (ii)  $\int \frac{\cos 2x \cos 2\alpha}{\cos x \cos \alpha} dx$

https://www.ccsustudy.com

https://www.ccsustudy.com

18005