A (Printed Pages 4)
(20222) Roll No.
BCA-I Sem.

18005 (CV-III) B.C.A. Examination, Dec.-2021 MATHEMATICS-I

(BCA-101)

Time: 1½ Hours] [Maximum Marks: 75

Note: Attempt questions from **all** sections as per instructions.

Section-A

(Very Short Answer Questions)

Note: Attempt any two questions of this Section. Each question carries
7.5 marks. Very short answer is required. 2×7.5=15

- Define continuity at a point.
 - State Caley-Hamilton Theorem.

P.T.O.

3. If
$$y = \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}$$
, find $\frac{dy}{dx}$

- 4. Evaluate $\int \log_{eX} d_{X}$.
- Find λ such that ā and b are perpendicular vector where

$$\vec{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}, \quad \vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}.$$

Section-B

(Short Answer Questions)

Note: Attempt any **one** question out of the following **three** questions. Each question carries **15** marks. Short answer is required. 1×15=15

- Expand e^x in ascending powers of x by Maclaurin's theorem.
- \mathcal{J} . Differentiate x^x .
- 8. Prove that

$$\begin{vmatrix} 1 & a & a^3 \\ 1 & b & b^3 \\ 1 & c & c^3 \end{vmatrix} = (a - b)(b - c)(c - a)(a + b + c).$$

18005 (CV-III)/2

https://www.ccsustudy.com

Section-C

(Detailed Answer Questions)

Note: Attempt any two questions out of the following five questions. Each question carries 22.5 marks. Answer is required in detail. 2×22.5=45

- 9. (a) Find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$
 - (b) Determine the eigen values of the matrix

$$A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$$

- 10. (a) Show that the function f(x)=|x| is continuous at x=0.
 - (b) Evaluate

$$\lim_{h\to 0} \left(\frac{\sqrt{x+h} - \sqrt{x}}{h} \right)$$

18005 (CV-III)/3

P.T.O.

- 11. (a) Differentiate $y=x \sin x \log x$.
 - (b) Find the maximum and minimum values of $(3x^4-8x^3+12x^2-48x+25)$ in [0, 3].
- 12. (a) Evaluate $\int x^2 \sin x \, dx$.
 - (b) Evaluate $\int (\sqrt{\sin x} \cdot \cos x) dx$.
- 13. (a) Show that the vectors $\hat{i}-3\hat{j}+4\hat{k},2\hat{i}-\hat{j}+2\hat{k} \text{ and } 4\hat{i}-7\hat{j}+10\hat{k}$ are coplanar.
 - (b) Find the area of a parallelogram whose adjacent sides are determined by the vectors.

$$\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$$
 and $\vec{b} = -3\hat{i} - 2\hat{j} + \hat{k}$.