A (Printed Pages 4)_
(20622) Roll No.

BCA - II Sem.

18010

B.C.A. Examination, June-2022

MATHEMATICS-II

[BCA-201]

Time: Three Hours [Maximum Marks: 75]

Note: Attempt **all** the Sections as per instructions.

Section-A

(Very Short Answer Type Questions)

Note: Attempt all the **five** questions. Each question carries 3 marks.

- Define sets and Universal sets with example.
- Define equivalence Relation and show that the relation S={(a,b):a≥B} on the set R of real no is an equivalence relation.

P.T.O.

https://www.ccsustudy.com

- Show that the inclusion relation ⊆ is a partial ordering on the power set of a set
 S.
- 4. If $Z = e^{xx}$, $x = t \cos t$, $y = t \sin t$ compute $\frac{dz}{dt}$ at $t = \frac{\pi}{2}$.
- 5. If $\cos \alpha$, $\cos \beta$, and $\cos \gamma$ are the direction cosines of a straight line then prove that $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$

Section-B

(Short Answer Type Questions)

Note: Attempt any **two** questions out of the following three questions. Each questions carries 7½ marks.

- Show that Dual of a complemented lattice is complemented.
- 7. Find the equations of the straight line drawn through the origin which will intersect both the lines.

$$\frac{x-1}{1} = \frac{y+3}{4} = \frac{z + 3}{3}$$
 and $\frac{x-4}{2} = \frac{y+3}{3} = \frac{z-14}{4}$

8. Show that $f(x,y,z)=(x+y+z)^3-3(x+y+z)-24xyz+a^3$ has maxima at (1,1,1)

18010/2

https://www.ccsustudy.com

Section-C

(Long Answer Type Questions)

Note: Attempt any **three** questions out of the following five questions. Each questions carries 15 marks:

- 9. Let the function $f: R \to R$ and $g: R \to R$ be defined by $f(x) = 2x, g(x) = x + 2 \forall x \in R.$
 - (a) Check the function f and g for being.
 - (i) One -to-One (ii) Onto
 - (b) Find the formulac defining the function fog and gof and obtain the values of (fog) (2) and (gof) (I).
- 10. (a) If (L,≤) is a lattice and a,b,c and d∈L then .
 - (i) $a \le b, c \le d \Rightarrow a \land c \le b \land d$
 - (ii) $a \wedge (b \vee c) \geq (a \wedge b) \vee (a \wedge c)$
 - (b) Show that dual of a lattice is a lattice.
- 11. (a) Show that f(xy, z-2x)=0, satisfies under suitable conditions, the equation $x\frac{\partial z}{\partial x}-y\frac{\partial z}{\partial y}=2x$. What are these conditions.

18010/3

P.T.O.

₽.Т.

(b) If $z' = f \left[\frac{ny - mz}{nx - iz} \right]$ Prove that $(nx - iz) \frac{\partial z}{\partial x} + (ny - mz) \frac{\partial z}{\partial y} = 0$

- 12. (a) Find the equations of the plane parallel to the plane 2x-3y-5z+1=0 and distant 5 units from the point (-1,3,1).
 - (b) Find the equation of the sphere which touches the sphere $x^2+y^2+z^2+2x-6y+1=0$ at (1,2,-2) and passes through the point (1,-1,0).
- 13. (a) Evaluate the double integral $\int_0^\infty \int_0^{\sqrt{x^2}} x^2 y dx dy$. Also mention the region of integration involved in this double integral.
 - (b) Evaluate the following integrals by first converting to Polar coordinates $\int_{1}^{1} \int_{\sqrt{1-x}}^{\infty} \cos(x^2 + y^2) dxdy$

18010/4